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Abstract. We make time resolved velocity measurements of steel spheres in free fall through liquid using
a continuous ultrasound technique. We explore two different ways to induce large changes in drag on the
spheres: 1) a small quantity of viscoelastic polymer added to water and 2) altering the surface of the
sphere. Low concentration polymer solutions and/or a pattern of grooves in the sphere surface induce an
early drag crisis, which may reduce drag by more than 50% compared to smooth spheres in pure water.
On the other hand, random surface roughness and/or high concentration polymer solutions reduce drag
progressively and suppress the drag crisis. We also present a qualititative argument which ties the drag
reduction observed in low concentration polymer solutions to the Weissenberg number and normal stress
difference.

PACS. 47.85.lb Drag reduction – 47.32.Ff Separated flows – 47.63.mc High Reynolds number motions

1 Introduction

Reduction of drag in turbulent flows due to a small quan-
tity of viscoelastic polymer added to the fluid has been the
subject of intense research for more than 50 yrs (e.g. [1,2]).
For example, the addition of as little as 5 parts per million
(ppm) of polyacrylamide to turbulent pipe flow can result
in an increase in flow speed of 80% for a given imposed
pressure drop [3]. Similar flows with rough or structured
wall surfaces have also been shown to exhibit reduction
in drag (e.g. [4,5]). Our experiments address drag reduc-
tion by similar mechanisms for bluff bodies, which has
received far less attention in spite of the potential impact
on a broad range of phenomena and applications (aircraft,
underwater vehicles and ballistics, predicting hail damage,
sports ball aerodynamics, fuel pellets, etc.).

The aim of our work is to explore the influence of
polymer additives in the fluid as well as sphere surface
structure on the drag experienced by free falling spheres.
Before we review the literature on these topics, let us first
recall the main characteristics and terminology of high
Reynolds number flow around spheres. (Reynolds number
is defined as Re = UD/ν where U is sphere speed, D is
sphere diameter, and ν is the kinematic viscosity of the
fluid.) In the range 104 < Re < 107, two basic phenom-
ena are responsible for the most prominent flow features:
flow separation and the transition to turbulence in the
sphere boundary layer. For 200 < Re < Re∗w ≈ 3 × 105
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flow separation occurs. (The w subscript distinguishes the
value for smooth spheres in pure water from the differ-
ent cases discussed later.) In this regime, laminar flow
extends from the upstream stagnation point to slightly
downstream of the flow separation point, i.e. the turbu-
lence develops downstream from the separation point. In
contrast, at Re just above Re∗w, the boundary layer be-
comes turbulent upstream of the flow separation point.
The resulting change in the velocity profile abruptly moves
the separation point downstream. Since the drag on the
sphere is dominated by pressure drag (form drag), this
jump in the separation location results in a severe drop in
drag, the so-called drag crisis [6–9]. In this range of Re,
friction drag contributes not more than 12% to the total
drag on a smooth sphere [6]. Although indirectly, our in-
vestigation is essentially exploring the effects of polymer
additives and sphere surface structure on the dynamics of
boundary layer separation and transition to turbulence.

We now briefly review studies which directly address
these issues. Both Ruszczycky [10] and White [11] mea-
sured drag on a falling sphere in aqueous polymer solu-
tions at Re < Re∗w. Ruszczycky studied relatively high
concentrations between 2500 and 15000 ppm (by weight)
of poly(ethylene oxide) (4 × 106 molecular weight (MW))
and guar gum (unknown MW) for a range of sphere
sizes from 9.5 to 25.4 mm in diameter. Maximum drag
reduction of 28% was found for a 25.4 mm sphere in
5000 ppm guar gum solution. For higher concentrations
(15 000 ppm) the drag was found to increase compared to
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water, probably because such high concentrations tend to
be rather viscous. White used the same polymer at smaller
concentrations with a similar range of sphere sizes and
found a 45% maximum reduction in drag for a 75 ppm so-
lution. White [12] and more recently Watanabe et al. [13]
investigated a range of Re spanning the drag crisis. Their
work suggests that at polymer concentrations above about
30 ppm, the drag crisis is replaced by a gradual decrease
in drag which manifests as drag reduction for Re < Re∗w
and drag enhancement for supercritical Re > Re∗w. This
is consistent with the observations of White and Ruszczy-
cky below the drag crisis, as well as water tunnel mea-
surements with circular cylinders [14]. At smaller polymer
concentrations (5 to 10 ppm) the situation is less clear. A.
White’s measurements show erratic variation of drag as Re
is increased, while Watanabe et al. report no change in be-
havior compared to water. Cylinder studies, in contrast,
show a more sharply defined drag crisis at low polymer
concentration [14]. One of the goals of our work is to bet-
ter understand the nature of low concentration polymer
effects near the drag crisis.

Concerning free falling rough spheres, to our knowl-
edge, only one experimental work exists in the litera-
ture. In this short, qualitative study, White explored the
combined effects of surface roughness and polymer addi-
tives [15]. He found that roughening the sphere surface
shifts the wake separation point downstream, reducing
drag, but with both a rough surface and polymers added
the separation point shifts back upstream, increasing drag.
Our observations add to White’s intriguing results.

Wind tunnel measurements for both spheres [16] and
cylinders [17] indicate that the drag crisis is shifted to
lower Re when the surface is roughened. The roughened
surface triggers an early transition to turbulence in the
boundary layer. Golf balls are made with surface dimples
in order to reduce drag by a very similar mechanism [18].
Furthermore, Maxworthy showed that adding a trip on
the upstream surface of a smooth sphere induces a tur-
bulent boundary layer and early drag crisis [8]. We are
aware of no fixed sphere studies addressing roughness and
polymer effects together. We add a note of caution to the
reader that fixed (wind tunnel) and free-falling spheres
may not behave the same. The first case corresponds to a
fixed velocity of the upstream flow, while the second cor-
responds to a constant force driving the motion. Unlike
the fixed sphere, a falling sphere cannot exist in a steady
state with Re very close to Re∗w; it is not a stable solu-
tion. Furthermore, even at terminal fall speed the wake is
never truly steady. It is dynamically active with long-lived
non-axisymmetric spatial structure. As a result, the “ter-
minal” fall velocity of a sphere fluctuates in both direction
and magnitude, which may lead to small discrepancies in
comparing to wind tunnel data or to other free-fall exper-
iments.

This paper is organized as follows. The next section
presents the experimental procedures and equipment. In
Section 3 we present our measurements for the free fall
of smooth or roughened spheres in water and in solutions
containing small polymer amounts. We discuss our results

Fig. 1. Setup: the vertical velocity of falling steel spheres is
measured with an ultrasound device. The fluid is tap water,
pure or with small amounts of polymer additives. Smooth,
grooved, and rough spheres are tested.

in terms of changes in drag with varying Reynolds number,
polymer concentration and surface conditions. In the last
section, we link our results at low polymer concentrations
to the effects of a coil-stretch transition [27].

2 Measurement system and technique

We measure the fall velocity of steel spheres (ball bear-
ings with density ρ = 7.8 g/cm3) with diameters ranging
from 3 mm to 80 mm. Two types of sphere surfaces are
investigated in addition to the polished smooth surface
(see photos in Fig. 1). The first type, grooved spheres,
have have a regular pattern of grooves machined into the
surface. The grooves are 500 µm deep, 1 mm wide. The
second type corresponds to roughened surface, produced
either by sanding the smooth polished spheres or by glu-
ing onto the surface a single layer beads. In the first case,
changes in the surface height are of the order of 10 mi-
crons. In the second case, we have used spherical glass
beads 700 µm in diameter. The fluid vessel is 2 m tall and
30 × 30 cm in lateral dimension with walls made of 2 cm
thick acrylic plate. The tank is filled with either tap wa-
ter or a dilute aqueous solution of polyacrylamide (MW
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5×106, granulated form, Sigma-Aldrich). The polymer so-
lutions range in concentration between 5 and 200 ppm by
weight. The polymers are mixed first with 2 liters of wa-
ter with a magnetic stirrer for at least 8 h and then mixed
with another 180 liters of water for 5 min in the experi-
mental vessel. Tests with colored dye in the fluid confirm
that this procedure effectively mixes the fluid. These poly-
mer concentrations are in the dilute regime, significantly
below the estimated overlap concentration of 1200 ppm.
The Weissenberg number Wi, defined as the ratio of poly-
mer relaxation time τR ∼ 10−4s to flow time scale (see
Sect. 4.2 for details), ranges between 0.8 and 2.3.

The spheres are released at the top of the vessel using
an electromagnet. The speed of the ball is obtained using
a continuous ultrasound technique. This technique is de-
scribed in more detail in previous publications [20,21], and
we briefly recall it here. One ultrasound transducer posi-
tioned at the top of the vessel emits sound at 2.8 MHz
into the fluid. As the sphere falls it scatters sound at a
Doppler shifted frequency which is measured with a sec-
ond ultrasound transducer located near the emitter. The
recorded signal is processed to recover the vertical compo-
nent of the sphere velocity. The processing entails mixing
the recorded signal with a 2.8 MHz sinusoid, low pass fil-
tering, decimating to a lower sample rate, and finally using
a parametric time-frequency analysis algorithm (MVA, see
Ref. [21]) to recover the time varying Doppler shifted fre-
quency. The resulting absolute precision for the velocity
measurement is about 2 cm/s with a relative precision in
mm/s. With typical fall speeds of several m/s, this is bet-
ter than 1% precision. At such high Reynolds numbers
(104–106), the flow in the wake contains significant non-
axisymmetric flow structures [7], which often cause some
lateral motion of the sphere. We present data only from
trajectories that remained at least one sphere diameter
away from the vessel walls throughout the fall. Based on
studies of tunnel blockage effects for fixed spheres, we ex-
pect that walls have less than 5% influence on measured
drag coefficients [16]. Furthermore, any wall influence is
similar for the different polymer solutions and sphere sur-
faces allowing for meaningful comparisons between the dif-
ferent cases.

3 Experimental results

In this section, we present our observations in the form of
either drag coefficient estimates or velocity time series.
Each presented measurement is the result of averaging
over several trajectories under the same conditions. We
find that each drop is reproducible up to instantaneous
differences up to several percent. We first discuss our mea-
surements of smooth spheres falling in water, which pro-
vide a baseline for comparisons to the results from our
experiments with polymer solutions and rough spheres.
Next, we present measurements of smooth sphere behavior
in polymer solutions. Then we explore the consequences
of surface grooves or roughness in water. And finally, we
address the combined case of altered-surface spheres in
polymer solutions.
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Fig. 2. Water and smooth spheres: (a) Time series of the
spheres vertical velocity u(t) during their free fall. The in-
set shows the drop – with a non zero initial velocity – of a
60 mm sphere: as its velocity reaches 3.5 m/s it experiences
the drag crisis. (b) Comparison of the experimental data with
a model u(t) = UT (1− exp(−t/τ )) exponential evolution. The
parameters (τ, UT ) are obtained using a multidimensional un-
constrained nonlinear minimization (Nelder-Mead) with MAT-
LAB. The inset shows the evolution of the characteristic time τ
with the Reynolds number. Note the sharp change in behavior
near the drag crisis.

3.1 Water

We show in Figure 2a the fall velocity time series for
the spheres with diameter D varying between 3 mm and
80 mm. As the spheres are released from rest, they accel-
erate until a terminal velocity UT is reached – although
for the larger spheres the water tank is not sufficiently tall
for this steady state to be reached. The dynamics at the
onset of motion is quite complex. Added mass effects, as
well as wake-induced lift forces and history forces play a
role [19,20]. However when the Reynolds number is large
the dominant forces at work during the vertical fall of the
sphere are the gravitational force FB = 1/6(ρS−ρF )πD3g
and an effective drag force FD = 1/8CDπρF D2U2

T , where
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Fig. 3. Drag coefficient measurements for smooth spheres in
water. Large red circles – our data; small black circles – Achen-
bach (wind tunnel) [16]; open squares – White’s data [12].

CD is the usual drag coefficient; ρF and ρS are the fluid
and sphere densities. In the steady state, these forces bal-
ance and one may then compute the drag coefficient as

CD =
4
3

(ρS/ρF − 1)Dg

U2
T

. (1)

We note here that, unlike wind tunnel experiments, the
velocity is not prescribed so that both CD and Re are
empirically computed from the data – the equation above
may be viewed as an implicit relationship for CD(Re)Re2

as a function of the control parameters of the experiment.
We observe that during the approach to terminal

speed, the trajectories for different sphere sizes are fully
characterized by one time scale τ and the terminal speed
UT . We may extract τ and UT from each velocity time
series by fitting the data to an exponential of the form,
u(t) = UT (1−e−t/τ ). In agreement with previous observa-
tions [20], the exponential is simply an effective tool used
to extract τ and UT and does not accurately represent
the more complex dynamics of the true trajectory. When
scaled by τ and UT , all the time series in Figure 2a col-
lapse onto one curve, verifying the importance of these
two characteristic quantities. Using the exponential fit on
the entire time series, we take advantage of our good res-
olution in both time and velocity magnitude to obtain ac-
curate measurements of UT even though the fall distance
is only 2 m. Since this method integrates the whole time
record of the fall, it also avoids possible errors incurred
by taking single point measurements as has been done in
past studies. Furthermore, inspection of the entire veloc-
ity time series is often very instructive, clearly revealing
the drag crisis in some cases – see for instance the inset of
Figure 2a, where a 60 mm sphere is shown to accelerate
again as its Reynolds number exceeds Re∗w.

We compare in Figure 3 our measurements of drag
coefficients for smooth spheres in water to the free fall
measurements of White [12] as well as the wind tun-
nel measurements of Achenbach [6]. We find an excellent
agreement with White’s data. In particular, we find that
the critical Reynolds for the drag crisis is Re∗w = 2.8×105,
a value that serves as a reference for comparison with the
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Fig. 4. Polymers: (a) Fall velocity time series of a 40 mm
sphere in water, and polymer solutions with concentration in-
creasing from 5 to 200 ppm. In the 5 and 10 ppm solutions the
sphere undergoes a drag crisis where none existed for the pure
water case. (b) Percentage change of terminal velocity UT for
increasing polymer concentration compared to pure water case
for 40 mm sphere.

fall of spheres with modified surfaces and in water with
additives. We also note that both White’s data and ours
suggest that the value of the drag coefficient just after
the drag crisis for the free fall of spheres (imposed force
case) is twice that observed in wind tunnel experiments
(imposed velocity case).

3.2 Polymer solution

We first present velocity time series for a 40 mm sphere
falling in a range of polymer concentrations in Figure 4a.
We observe that at all concentrations the sphere termi-
nal velocity is larger than in pure water; drag is reduced.
This effect is greatest at small polymer concentrations,
as demonstrated in Figure 4b: drag reductions over 30%
have been observed for polymer concentration less than
20 ppm, while at higher concentrations the change is 10–
25%. In the 5 and 10 ppm solutions, one observes a sud-
den acceleration of the sphere once it achieves a velocity
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Fig. 5. Polymers: Drag coefficient measurements for smooth
sheres in water (circles) compared to polymer solution. In 10
ppm solution (squares) the drag crisis is shifted to lower Re.
In 200 ppm solution (diamonds) the drag crisis is replaced by
a gradual decrease in drag.

of about 2.5 m/s; this is the drag crisis. Examining the
data for a range of sphere sizes in the 10 ppm solution
(see Fig. 5a), we see that the critical Reynolds number is
then Re∗polymer ∼ 1.0 × 105, almost a third of the value
Re∗w ∼ 2.8 × 105 in pure water. On the other hand, at
higher polymer concentrations, we do not observe a jump
in the velocity time series and their is no discontinuity
in the drag CD(Re) curve. One observes that for high
polymer concentrations, compared to the low concentra-
tion case, the drag is reduced at Re < Re∗polymer, but en-
hanced for Re > Re∗polymer. This data suggests that there
is no drag crisis for high polymer concentrations, but in-
stead the drag decreases continuously with increasing Re.
These observations are consistent with the experiments
of previous investigations using poly(ethylene oxide) in a
similar range of concentrations [12,13]. We have not been
able to reach Reynolds numbers high enough to determine
whether the drag would reach a common asymptotic limit.

3.3 Rough and grooved surfaces in water

In exploring surface structure effects, we concentrate our
attention on 30 and 40 mm spheres, whose Re in pure
water lies just below the drag crisis. The time series in
Figure 6 illustrate the different behaviors for the differ-
ent surfaces we studied. In pure water, both the 30 mm
grooved sphere and rough sphere behaves the same as
the 30 mm smooth sphere — cf. Figure 6a. In contrast,
adding grooves to the 40 mm sphere induces a drag crisis,
as shown in Figure 6b. The 40 mm rough sphere showed
moderate drag reduction, but not a well defined crisis. In-
deed, the dynamics in Figure 6b shows that the terminal
velocity is increased compared to the smooth sphere, but
there is no clear change in the acceleration as in the case
of the grooved sphere.
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Fig. 6. Rough and grooved spheres: velocity time series for
grooved (dashed line) and rough spheres (dash-dotted line)
compared to smooth spheres (solid line) in pure water. The
grooved surface induces an early drag crisis.

Grooves are thus able to shift the drag crisis from
Re∗w ∼ 2.8 × 105 to Re∗grooves ∼ 0.8 × 105. In the case
of the 40 mm sphere, the terminal velocity increases from
2.5 m/s to 3.4 m/s, corresponding to a drag reduction of
46%. For the rough sphere, a drag reduction is also ob-
served but it is limited to a 20% gain. This difference in
behavior is not yet understood. One may note that a rough
surface destabilizes the boundary layer but also increases
friction and dissipation.

Finally, we have observed that sanded spheres (rugos-
ity of the order of 10 µm) with a diamater of 30 and 40 mm
showed no change compared to smooth spheres. This in-
dicates that surfaces modifications must exceed the thick-
ness of the viscous sub-layer in order to produced measur-
able effects on the dynamics.

3.4 Rough and grooved surfaces in polymer solution

We now examine the changes in the above described be-
havior when polymer is added to the water. We find that
the two regimes of low and high concentration – Sec-
tion 3.2 – are affected differently by adding grooves to the
sphere surface. Results for the grooved spheres are pre-
sented in Figure 7. At low concentration the shift of the
drag crisis to lower Re due to polymer is exaggerated by
adding grooves to the sphere; Re∗w is shifted even lower.
Indeed, in a 5 ppm solution, the 30 mm grooved sphere ex-
periences the drag crisis, whereas the same sphere in water
as well as the smooth 30 mm sphere in 5 ppm solution do
not. We find that the Re∗grooved+poly ∼ 6 × 104, a further
gain of 20% compared to polymers alone. At higher poly-
mer concentration, the spheres behave identically with or
without grooves.

The rough sphere did not exhibit the same behavior.
Rather, the surface roughness seems to suppress the drag
crisis, in agreement with the observations of White [15].
Our results are presented in Figure 8, for a 40 mm sphere.
When the surface is smooth, one observes as before the
shift in the drag crisis and a very large terminal velocity
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Fig. 7. Grooved spheres and polymers: At low polymer concentration (left column) adding grooves to the sphere induces an
even earlier drag crisis compared to the smooth sphere. At high concentration (right column) grooves do not change the observed
dynamics.
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Fig. 8. Rough sphere (40mm): Adding polymer causes nearly
no change in the behavior of rough spheres, and suppresses the
drag crisis independent of the polymer concentration.

at low polymer concentration (10 ppm), as well as a re-
duced drag at high concentration (200 ppm). However, for
the rough sphere all dynamical v(t) curves are very close.
The rough spheres experience no further decrease in drag
in the polymer solutions, compared to what is already in-
duced by the surface roughness. In fact, there even may
be a slight increase in drag (of the order of 5%) when the
rough sphere falls in the water and polymer solution, at
any concentration.

4 Discussion

4.1 Experimental summary

We have conducted a series of experiments using precise
and time resolved ultrasound velocity measurements to
compare the behavior of rough and smooth steel spheres
falling through water or dilute aqueous polymer solutions.
Remarkably, we find that in low concentration polymer so-
lutions (5 to 20 ppm) the drag crisis happens at a lower
Reynolds number than in water. By adding a pattern of
shallow grooves to the sphere surface, we shift the drag
crisis to even lower Re. Adding grooves to a sphere in
pure water also shifts the drag crisis to lower Re. On the
other hand, a sphere roughened with a layer of 700 µm
beads glued to its surface never experiences a drag crisis,
exhibiting nearly the same drag with or without polymers.
The drag on a rough sphere is slightly less than that on
a smooth sphere. For higher concentration polymer solu-
tions (100–200 ppm) and smooth spheres the drag crisis
is suppressed and replaced by a more gradual decrease in
drag as Re is increased. This high concentration behav-
ior is largely unchanged by adding grooves to the sphere
surface.

Our measurements seem to indicate that for low con-
centrations the polymers are able to induce the transi-
tion to turbulence but have little effect on the location
of flow separation whether laminar or turbulent. That is,
low polymer concentrations induce an early drag crisis,
but do not greatly change the drag before and after the
crisis, so that we may conclude that the location of the
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separation points have not been significantly changed. In
fact, we have observed that the dynamical behavior v(t)
is quite well modelled by a simple shift in the CD(Re)
curve, coupled to a simple dynamical equation in which
only the drag force is accounted for. Compared to low
polymer concentration we find that at high concentration
drag is reduced at low Re and enhanced at higher Re.

Surface roughness is commonly understood to induce
an early transition to boundary layer turbulence [8], which
may explain the shift in Re∗w observed for the grooved
sphere. On the other hand, it is difficult to explain in the
same context our observation of rather weak drag reduc-
tion and apparent suppression of the drag crisis for the
rough sphere. Perhaps friction drag is significant in this
case. Further investigation of this curious behavior is left
for future work.

4.2 Drag crisis and normal stress difference

In this section we try to rationalize the effect of the poly-
mers on the observed drag reduction. We follow ideas pro-
posed for drag reduction in pipes [25] and much developed
since (see for instance [28]). Specifically, a change of con-
formation of the polymer is argued to be the source of the
modification of the drag crisis.

As discussed above, the drag crisis is the result of the
destabilization of the laminar boundary layer [23]. At a
critical Reynolds number the boundary layer becomes tur-
bulent, shifting the separation line downstream and re-
ducing accordingly the drag on the sphere. The polymer
has a priori little effect on the parameters influencing this
boundary layer transition, like the viscosity η. Indeed the
polymer concentration is smaller than the overlap con-
centration ξ�, separating the dilute from the semi-dilute
regime [24] – for the polymers under consideration, this
is estimated to be ξ� � 1200 ppm. The shear viscosity of
the polymer solutions in water, ηP , is related to the poly-
mer density according to ηP = ηw(1 + 1.49ξ/ξ�) with ηw

the water viscosity [24]. Thus for the low concentrations
under consideration here, ξ � ξ�, the viscosity is close to
that of water η ∼ ηw.

However this estimate assumes that the polymers’
structure is not affected by the flow. Velocity gradients
may locally induce a stretching of the polymer, which
can be quantified by the Weissenberg number defined as
Wi = γ̇τR, with γ̇ a deformation rate and τR the poly-
mer relaxation time. Typically, for Wi < 1 the polymer
is in a coil state, while for Wi > 1 stretching occurs. Let
us estimate Wi in our geometry. The relaxation time is
typically τR ∼ ηwR3

g/kBT , with Rg the radius of gyra-
tion of the polymer, Rg ∼ bNνF (b the monomer size and
νF � 3/5 the Flory exponent). For the polymers under
investigation, τR ∼ 10−4 s. On the other hand the defor-
mation rate is estimated as the shear rate in the bound-
ary layer, i.e. γ̇ ∼ U/δ, with U the sphere velocity and
δ ∼ √

νD/U the typical thickness of the boundary layer
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Fig. 9. Drag coefficient versus the reduced Reynolds number
Re/Rec. The different symbols correspond to various concen-
trations of polymers: (◦) 10ppm; (square) 25ppm; (�) 50ppm;
(�) 100ppm; (�) 200ppm. Lines are a guide to the eye. For a
given polymer concentration, the different experimental points
correspond to different size of the falling sphere (from left to
right, D = 3, 6, 10, 20, 30, 40, 50, 60 mm).

(a the diameter of the sphere). This gives

Wi ∼ U3/2τR√
νD

, (2)

which can be rewritten

Wi ∼
(

Re

Rec

)3/2

, (3)

with a critical Reynolds number Rec defined as

Rec =
(

D2

ντR

)2/3

. (4)

At Rec the polymer is thus expected to undergo – within
the boundary layer - a coil-stretched transition and the
drag will be accordingly be affected (as we discuss here-
after). This point is confirmed experimentally in Figure 9
where the drag coefficient is plotted versus the reduced
Reynolds number Re/Rec: the ‘drag-crisis’ is always found
to occur for Re ∼ Rec for the different cases investigated.
While a full rescaling is not expected in this plot, this
figure points to the relevance of the Weissenberg number
as a key parameter to the polymer induced drag crisis: it
does show that the drag crisis transition with polymers,
i.e. when the drag coefficient strongly decreases, occurs at
a Reynolds number of the order of the critical Reynolds
number, Re ∼ Rec. This indicates that the drag crisis
criterion with polymers corresponds to Wi ∼ 1, as also
observed in earlier works.

At this level, the previous discussion suggests that the
polymer effect on the drag crisis is associated with a con-
formation change. The question of the polymer-flow cou-
pling however remains, and in particular the origin of an
earlier destabilization of the boundary layer.
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First, as the polymers in the boundary layer become
stretched, most of the properties of the polymer solution
in this region will change dramatically: the typical size
of the polymer increases indeed from the radius of gyra-
tion to the much larger contour length of the polymer,
L � Rg. This affects the relaxation time which now be-
comes τR ∼ ηwL3/kBT , and therefore the viscosity which
increases typically by a factor (L/Rg)3 = N3(1−νF ) � 1.
However, increasing the viscosity in the boundary layer
amounts to a decrease in the local Reynolds number: this
would lead to a re-stabilization of the laminar boundary
layer, an effect which is opposite to the experimental ob-
servation.

Another origin has therefore to be found. We suggest
that the destabilization of the boundary layer originates
in a very large normal stress difference occurring when the
polymer is in its strechted state. Normal stress difference
is a non-Newtonian effect which is commonly observed in
polymer solutions [24]. This is known to lead for example
to the Weissenberg (rod-climbing) effect. In our geometry,
the normal stress difference is expected to be proportional
to the square of the shear-rate according to

∆σ = σxx − σyy = ΨP γ̇2 (5)

with ΨP a transport coefficient ; σxx, σyy are the normal
components of the stress tensor in the x and y directions,
with {x, y} local coordinates respectively parallel and per-
pendicular to the sphere surface (curvature effects are ne-
glected).

Let us show that this term does destabilize the bound-
ary layer. Classically, the boundary layer is destabilized
by a negative pressure gradient term due to a decrease of
the fluid velocity Ue(x) in the outer layer [23]: −∇Pe =
ρUe(x)∇Ue(x), with Ue(x) the fluid velocity outside the
boundary layer. A stability analysis of the boundary layer
with such a pressure gradient leads to a destabilization at
a reduced Reynolds number [23] Reδ = Uδ/ν ∼ 600, cor-
responding to Re ∼ 105. The normal stress difference adds
a contribution to this term, leading to an supplementary
effective pressure gradient term

−∇Peff = ρUe(x)∇Ue(x) + ΨP∇γ̇2, (6)

where γ̇ � Ue(x)/δ(x) and δ(x) � √
νx/Ue(x) the local

thickness of the boundary layer. It is easy to verify that
this supplementary contribution to the effective pressure
gradient will be negative - and therefore destabilizing, be-
fore the classical contribution ρUe(x)∇Ue(x). Moreover in
the stretched state (Wi > 1), one may verify that this con-
tribution is dominant as compared to the classical one.
The ratio ∆ between these two terms is of order ∆ ∼
ΨP γ̇2/ρU2

e . Using ΨP ∼ ηP τP with ηP the polymer con-
tribution to the viscosity and τP the polymer relaxation
time [24], one deduces ∆ ∼ UτP /D ∼ (L/Rg)3/

√
Rec

(for Re = Rec). In our case, with Rec ∼ 105, (L/Rg)3 =
N3(1−νF ) ∼ 2×105 (N � 35×103), one has ∆ ∼ 103 � 1.
This term thus leads to a strong destabilization as soon
as the polymer is stretched.

To summarize, for Re ≥ Rec the coil-stretched tran-
sition occurs for the polymer in the boundary layer, and

the existence of a normal stress difference induces a strong
destabilization of the laminar boundary layer. This sce-
nario gives the trends of the underlying mechanisms lead-
ing to a shift of the drag crisis even for very small amounts
of polymers. For the polymer additive to have an effect,
the critical Reynolds number has to be lower than the
critical Reynolds number for the drag crisis in pure water,

Re�
w: Rec =

(
D2

ντR

)2/3

< Re�
w. This provides a condition

in terms of the size of the falling object but also a min-
imal polymer weight (since τR ∝ N3ν). To go further, a
more detailed stability analysis of the boundary layer with
the supplementary normal stress difference is needed. We
leave this point for further studies.
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